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In [l - 31 the proof was given of the reduction principle in stability theory when 
investigating critical cases. In the present paper the reduction principle is proved 

for nearly-critical cases [4]. The stability problem in one essentially singular 
case is solved. The stability of a pitch gyro is investigated. 

1. We consider a real autonomous system of differential equations of a perturbed 
motion of the form 

.z,* = jj..,X, +X,(.X) (v=l,..., r, x321,..., zr) (1.1) 
I=1 

Here X, are holomorphic functions in the region 

zra+. . . +z,a<’ (1.2) 

whose expansions do not contain terms of less than second order. H is some finite posi- 
tive number. We assume that the characteristic equation of system (1.1) has Q roots 
with negative real parts, m zero roots, and p roots with real parts which are small in 

absolute value. We remark that any system with an arbitrary number of zero and pure- 
imaginary roots and roots with small positive real parts can be reduced to such a form. 

Under these conditions system (1.1) can be transformed by means of linear substitut- 
ions to the form 

Ys’ = 2 g,kYk + y, (Y, z) 
k=l 

6 = h + . . . + k,, s = 1, . . . . n 

zj’ = i p?iZi + 5 Aj(*‘Y” + Zj (!I, Z) 

i=i,...,q, n=m+p 
(1.3) 

n-\q=r, yk = ylki . . . Y> 

i=l s>2 
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Here y, are critical and nearly-critical variables, z, are the variables of the adjoint 
system. Here and subsequently the sign (*) replaces the index k,, . . . . k,. The stability 
or instability of system (1.1) will be defined in the following way [4]: if in the space of 

Xi, . . . , 2, we can find a closed region G possessing the property that the perturbations 

a+,..., a+, considered as functions of time and satisfying the equations of perturbed 
motion, -do not leave this region for any value of t > t, provided their initial values 

are located inside or on the boundary of this region, then the unperturbed motion is 
stable; otherwise, it is unstable. 

The problem under consideration subsequently is reduced to the obtaining of necessary 
and sufficient conditions imposed on the right-hand sides of the system of equations of 
perturbed motion. This is done in order that the stability region G, in spite of the pres- 

ence in the characteristic equa5ion of roots with positive real parts, be located in a 
sufficiently small neighborhood of the origin, and that all perturbed motions starting in 
region G approximate the unperturbed motion in time. To solve this problem it is nec- 

essary to establish for system (1.1) the existence of the region G, assuming that the 

number H in (1.2) is sufficiently small, and to indicate roughly how the boundaries of 

the stability region are determined. Otherwise it is necessary to show that in a sufficie- 

ntly small neighborhood of the origin there does not exist a stability region with the pro- 

perties indicated, and the motion is unstable. This problem is of interest in applications 
and in a general formulation answers the question on the “dangerous” and “safe” bound- 
aries of the stability region [S]. 

Obviously, region G is a stability region with the above-mentioned properties if in 

it there exists a sign-definite Liapunov function I’ [6] with a sign-definite derivative 
of opposite sign; conversely, there is no region G if in (1.2) there exists a Chetaev 
function n]. We assume that the signs of the derivatives of these functions are determ- 

ined by forms of no higher than fvth order, independently of higher-order forms. 

Let us show that the presence or absence of a region G in a sufficiently small neigh- 

borhood of the origin may be established from a “truncated” system, i.e., a system 
with only critical or nearly-critical variables, obtained from system (1.3) by means of 

known transformations [S]. By carrying out these transformations under the condition 
that the positive real parts of the roots of the characteristic equation are sufficiently 

small, in the place of system (1.3) we obtain 

rlS’ = i g,,r,k + i B,c*‘n”+ 5 PS(*c) (5) rlk i H, (% 5) (1.4) 

h-=1 832 s>N+l 

&' = i pjif& + i &WrJ" f $ (,j'*'(C)q" -t Ej(rlY 5) 

i=l B>,N+-1 ‘5.a.l 

Here the functions H, and Ei vanish when & = . . . = & = 0 and do not contain 
linear terms in these variables, B, , (*) A J”’ are constant coefficients, Pi*’ and Q$*’ 
are linear forms in ci, . . . , 5,. 

Theorem. If for the truncated system 
n N 

(s I=: 1, . .., n) (1-5) 
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a stability region exists in a sufficiently small neighborhood of the origin, or, conversely 
it is unstable, and this has been established by means of a Liapunov or a Chetaev funct- 
ion the sign of whose derivative is determined by a form of no higher than Nth order 

independently of higher-order forms, then a stability region exists also for the complete 

system, or the system is unstable. 

Indeed, for the complete system the function 

v = v, (rl) + v, (5) (1.6) 

is a Liapunov or a Chetaev function. Here V, is a Liapunov or a Chetaev function for 
system (1.5) while I’Z is determined from the equation 

$i 2 (Pji5i+ *. .+Pj,t,)="(6,%+...+5~) (1.7) 
3 

The number M < 0 for a positive-definite function V, with a derivative which is nega- 
tive-definite in region G The derivative of function (1.6) bv virtue of svstem (1.4) is 

V’ = VI’ (q) + M (512+ . . 

cm 

+ -jJ ~!*‘m4+w 
QNfl 

This expression can be written in the form 

1;’ = Vl' + M (512 + . . . . + t,‘) + 

8>N+1 i-1 j=l 

In the region of changing of the variables being considered, the sign of V’ is determined 
by the first two terms independently of the terms with the functions R(*) and Fij. Con- 
sequently, a stability region exists also for the complete system. 

Let us now assume that V1 is a Chetaev function for system (1.5). Then either the 

region Vi > 0 is contained inside the region VI’ > 0 or in the region V,V,’ > 0 we can 
delineate a region where a certain function W > 0 and the values of W’ a;e of the same 

sign on the boundary (W = 0) . If we assume that the region V, > 0 is contained inside 
the region V,’ > 0, we determine the function v2 from (1.7) with J4 > 0. The deriv- 
ative of the function V relative to Eqs. (1.4) also can be represented in form (1.9). It 
is also necessary to take into account that the functions Fij need not vanish when all 

the variables are zero. Let us define the number M > 0, so that the function 

is a positive-definite quadratic form for $1 = Z”ij (0, O).By representing F{j = Fg’ + 

+ Fii’ (5, q), we write expression (1.9) in the form 

V’ = Vl’ (11) + L (6) + 5 R(+) (0 rlk + zz 6,EjFe' (tt '1) 

GM+1 
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For sufficiently small ns, <j the last sums do not alter the sign of Y’ as determined by 
the first two terms. Consequently, when V > 0 we have V’ > 0 because the function 

‘vs < 0, and V is a Chetaev function for the complete system. The proof for the func- 

tions V and W satisfying Chetaev’s theorem can be carried out analogously. A method 

has been presented in [9] for an approximate estimate of the boundary of stability region 

G for a system containing pure-imaginary roots and complex roots with small positive 
real parts. 

2. As was shown in Sect. 1 we can make conclusions on the existence of region G on 
the basis of the truncated system if and only if the problem is solved by forms of a finite 
order N As is known, the latter holds in the case when the series of Uj determined frnm 

the system 

do not make the expressions for Y, (y, U) vanish identically. When Y, (y, U) 3 0 
forms of any finite order do not solve the stability problem, and it is necessary to exam- 
ine the complete system (1.3). 

Let Y, (y, U) 3 0; we consider this essentially singular case by assuming that the 
equation 1 g,, - hskv 1 = 0 either has no multiple roots or, in the presence of multiple 
roots, to each such roots there corresponds as many groups of solutions as its multiplicity. 
We transform system (1.3) by the substitution 

z~ -= 5j t u~(Y) (2.2) 

Here the Uj form series satisfying the system of Eqs. (2.1). Under our assumptions con- 
cerning the roots v, and for Y, (y, u) s 0 the series of uj converge absolutely, on 

the basis of Kamenkov’s theorem [8], in the region being considered of changing of the 

variables. As a result of transformation (2.2) the system of equations (1.3) takes the 
form 

!Js’ z i g,k!/k I- i I-s, (!/) gj {- Y, (9, 5) (2.3) 
k=l j=I 

P P 

G]’ = 2 PjiCi in 2 %ji (y) ci + Zj' (y, 5) 

Here the functions Ye, and 2, vanish when yr = . . . = y,, = 0,while the functions 
Y, and 21’ do not contain linear terms in the cj. By transforming system (2.3) to 

canonical form, we obtain 
rl 

j -1 
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i=l i=l 
(s - 1, . . ., 1, k = 1, . . ., g, 21+ g = p, P = I, . . ., m, i = 1, . . ., q, p, > 6, pltt > 0) 
We introduce new variable 2,, Y,, VC, Xv in the following way: 

(2.5) 
rk = ‘vk + %jwkj, 

and we determine the functions %j, n,jg wkjl f\Lj from the equations 

4 

p1 = usj, Fll = - 2 U&ii - &Vsj + ibusf + Es1 - XusiQij 

i=l 

F, = v,jv J’22 = - ~v,ipij + h,u,j + psv,j + IIsj - ZvsiQij (2.6) 

F3 = wkj, F33 = - zwk#ij + pklwkj + fikj - XWkiQij 

F, = fpj, FQ4 = - XfPPij + Spi - XfpiQij 

On the basis of that same theorem in [8] the functions u,j, v,j, wkj, f~j are determined 
from system (2.6) in the form of absolutely convergent series. As a result of transform- 

ation (2.5) system (2.4) takes the form 

X 8. = 11,X,- &y, + X,(x, y,v,x* Lz), y; = &!I, + %Xs + Ys(X9 YvV9 x9 5) 

Yk’ = pklvk + PI, (5, Y, v, x, G), x; = % (‘9 Y9 ‘9 x* 5) (2.7) 

5; = ZPj{& + zjl (X9 Y, v9 X9 5) 

Here X,, Y,, Ph, O,, Zj’ vanish when 51 = . . . = 6s = O,while, furthermore, the 

first four functions do not contain linear terms in the cj. 

For system (2.7) we take the Chetaev function in the form 

V = ilsr, (x,a + y,“) + ll&$a + %tb2 + w (5) (2.81 

by computing the negative-definite quadratic form win the vadables 51 from the 

Then the derivative V’ by’virtue of system (2.7) can be represented as 

Here the functions pi ,. vanish when X, == ~1, = v k = & = ?_Jj = 0. In the region 

ZXpz < 1 W 1, V > 0 the function V’ > 0 for values of the variables satisfying 
the inequality 

1 ~~UGjf’ij I < Zj 

Thus, for a system (1.1) satisfying the conditions in Sect. 2, region G does not exist 
in a sufficiently small neighborhood of the origin, and the motion is unstable. 

3. Lxrmplr. Using the results of p], we investigate the stability of the motion 
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of a pitch gyro with a center of gravity which is displaced relative to the point of 

suspension, without regard to the Earth’s rotation. We assume that the correction of the 

position of the gyro output axis relative to the direction of the local vertical is effected 

by a pendulum correcting device as well as owing to the moment arising from the dis- 
placement of the center of gravity. The equations of the motion of the gyro output axis 
relative to the local vertical can be represented in the form (the notation has the same 

meaning as in [lo] ) (*) 

J,v” + JQq’ = - Glc + MHt,, J,$‘*- JQv’ = - Cl* + MKc (3.1) 

JIE~” + x~e~‘+ klei = .II,, f$’ - &I’), Jtsa” + xaei’ + kzti = Mgz (v’ - Ed’) 

When the gyro output axis deviates from the vertical the suspension axes of the ~ndulums 
rotate with angular velocities q’ and L“. By considering the system’s motion only until 

the instant when @’ or Z“ equal zero, we take each pendulum to be a Froude pendulum 
[ I.11 with the characteristics 

Mg, (9,‘) = 1 - ll$', ,ll@ (0') = n - 1111v 

Let us rewrite the equations for the oscillations of the pendulums as 

Jlg!l” - (El - XI) ‘PI’ + hcpl = -- hzlr’, Jgpp2” -- (ml - xi) (P’L’ f kzcpa = - rn12,’ 

As in the case of a Froude pendulum we assume that 

(4 - x1) i J, =-- 2p, > 0. (m, - x2) / iZ = 2~~ > 0 

where Pa and n3 are small positive numbers. 

By approximating M,, and MBC as [ 121 

11-f,, -_ - [(I,($?_ 'p,)3 + 9" (l@ --- qq + . . .I, x,, = h1(s --WY 4 h (1: - 'P# -i- * * - 

by introducing 
((I1 > 0, h>O) 

k, / J, == AZ2 -+- /I~‘, k,iJ, .z= hz2 + J.L~“, 1,/J, -1 c,. m,/J, := c2 

CUJQ =- Xl, $ = x1, 1’ = y,, ‘pl =- y2, 1/2’ = p2y2 + &x+, Tz czz y, 
Y,’ = P3~3 i h,x,, q,lJQ = ol, h,lJQ = b,, r,h,& == “z 

c,@&f6~ = b,, c&,& my n3, c,h,&JB = b, 

and by neglecting the nutation terms in (3.X), we obtain the system of equations 

Z ----h i - ,y, - CI,(;C~ --- y,)” -- . . . . :/,* = h,z, - 6, (yl - y,f3 -... 

+’ ::z p2x2 - .Qz -t I+!/~ 7- 6, (x1 -- y,)” + . . . . ya’ == p2g2 + &x2 (3.2) 

5:, * == p+-, - k#:, -- n:,+ --t- b:, (r/l - Y,)” + . ..+ ~3’ = ~3~3 i- h,l, 

The characteristic equation corresponding to system (3.2) has two pairs of complex - 
conjugate roots with small positive real parts and a pair of pure-imaginary roots -?% * 

By the change of variables 
51 =-- :I, Y, = q19 J2 -:- Ez --t %Vl + PIE17 Y, I= 'la T %ql + &A 

53 -: E3 + a,& + hq,, Y, ."-: qs + aa:, + @4q, 

(*) Editorial Note. Reference [lo] is unobtainable. However the deduction made 
from the Russian original results in that the subscripts denote the following: K stands for 
“correction”; n for the “vertical”; and c for “displacement”. 
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we transform system (3.2) to the canonical form 

4, = p,4,-- Ql, + 9, (4, tl)# rl,’ = cL,rl, + J.,f, + H, (49 ‘1) 

Q - - n,X, + -1 - . . . . Hl = -bb,Y, + . . . . X, = (El - 91 - %lll - B&l)3 (3.3) 

Y, = (rll - q3 - ap51 - B4r1J39 8; = (b, + &) Xl + alb,Yl + . . . 

H, = a,b,Y, + &+,X1 f . . . . Ez = a,alX, + (b3 f 83bA Y, + . . . 

Hs = ara,X, + p4b,Y, + . . . (s = 1, 2, 3, p1 = 0) 

The coefficients a,, . . . . BP can be expressed without difficulty in terms of the coeffici- 
ents of system (3.2). Note that 

Bz = --2a&,J+JA, f34 = -2a3hlh3y31A (3.4) 

A = --[(h12 - ha2)2 + 2paa (h? + hza) + pa41 

The coefficients pB and 84 are positive; it is easy to choose them less than unity. By 
making further transformations analogous to those made in [9], we obtain the system 

r;‘=pLsrs+r.(a r afa 
51 1 

r 2+uQsr32)+... (rs>O, s=i, 2,3,pl=O) 
32 2 (3.5) 

a 11 = - 3/s 1~1 (1 - i-h) [(I - &d" + ~~31 + b, (1 - f34) [aa + (1 - fJ4)"]} < 0 

Q 12 = - $/4al (1 - /&) < 0, al3 = - 3/4b, (1 - !34)< 0 

u 21 = - 3/4r132% (1 - fw + Bzwh21 < 0, a22 = -“/@#z < 0, up3 = 0 
a, 31 = - 3/4[p4bl(1 - p4)2 + fi4blcd] < 0, a - k 3/&B4 < 0, 33 - a31 = 0, 

From the first equation of system (3.5) it follows that asymptotic stability holds with 
respect to the coordinate r1 and, consequently, with respect to the coordinates $ and 
u. Instability regions exist with respect to the coordinates z2, yz and x3, ~3 The outer 

boundaries of these regions can be estimated approximately by the equalities 

rzo = I/-pl/a~~, r30 = f- p3/a38 

The values of rzO and rsO may be made sufficiently small by an appropriate choice of 

the system parameters. Simultaneously, the values of rzo, r30 determine approximately 
also the inner boundary of the stability region with respect to r,, r3. To estimate the 

outer boundary of the stability region, when it is possible to do so by finite order terms, 

it is necessary to write down the higher-order terms in the system (3.5). Note that from 

the instant that the gyro wheel axis achieves the equilibrium position, the equations 

of oscillations of the pendulums have positive coefficients for the first derivatives, and 
their-motion is asymptotically stable. 
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Periodic solutions of heat conduction equations with boundary conditions of the 
relay kind are found for a finite interval, and the behavior of such solutions at 

unlimited time increase is analyzed. Periodic solutions of heat conduction equ- 

ations with nonlinear boundary conditions were considered in [ 1 - 4, lo], while 

in [5. S] periodic solutions of nonhomogeneous heat conduction equations with 
their right-hand sides nonlinear with respect to the unknown functions are pres- 
ented, and the asymptotic behavior of related initial problems is analyzed. 

Solutions of this kind define self-oscillating processes occurring in various bran- 
ches of hydrodynamics (theory of filtration and diffusion [3 - 61). 

1, The problem reduces to finding the periodic solution of equation 

all aaU __ .~. az-- 
at ax2 

in the finite region -1 < x < 0 with boundary conditions 

(1.1) 

au (- 1, t) 

i 

h,u (- I, t) 1- Ql for n(-J,L)<u*: 

ax - h+ (- 1, t) $- ‘/z for U(--I,t)>lr,* 
(1.2) 

(CL* > fL**, hl > 0, 112 > 0, q1 > 1/l) 
U (0, t) 7 0 

We set u (---I, t) = U*at t = T, and u (----I, t) =- uk* at t = T, with u == 

= u1 (x, t) for 0 < t < T, and IL = 11s (5, t) for Tr < t < T, and seek the 
solution of this problem in the form of series 


